Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis.

Identifieur interne : 000473 ( Main/Exploration ); précédent : 000472; suivant : 000474

Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis.

Auteurs : Elisabeth Tamayo [Espagne] ; Karim Benabdellah [Espagne] ; Nuria Ferrol [Espagne]

Source :

RBID : pubmed:26900849

Descripteurs français

English descriptors

Abstract

Glutaredoxins (GRXs) are small ubiquitous oxidoreductases involved in the regulation of the redox state in living cells. In an attempt to identify the full complement of GRXs in the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis, three additional GRX homologs, besides the formerly characterized GintGRX1 (renamed here as RiGRX1), were identified. The three new GRXs (RiGRX4, RiGRX5 and RiGRX6) contain the CXXS domain of monothiol GRXs, but whereas RiGRX4 and RiGRX5 belong to class II GRXs, RiGRX6 belongs to class I together with RiGRX1. By using a yeast expression system, we observed that the newly identified homologs partially reverted sensitivity of the GRX deletion yeast strains to external oxidants. Furthermore, our results indicated that RiGRX4 and RiGRX5 play a role in iron homeostasis in yeast. Gene expression analyses revealed that RiGRX1 and RiGRX6 were more highly expressed in the intraradical (IRM) than in the extraradical mycelium (ERM). Exposure of the ERM to hydrogen peroxide induced up-regulation of RiGRX1, RiGRX4 and RiGRX5 gene expression. RiGRX4 expression was also up-regulated in the ERM when the fungus was grown in media supplemented with a high iron concentration. These data indicate the two monothiol class II GRXs, RiGRX4 and RiGRX5, might be involved in oxidative stress protection and in the regulation of fungal iron homeostasis. Increased expression of RiGRX1 and RiGRX6 in the IRM suggests that these GRXs should play a key role in oxidative stress protection of R. irregularis during its in planta phase.

DOI: 10.1371/journal.pone.0149606
PubMed: 26900849
PubMed Central: PMC4765768


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis.</title>
<author>
<name sortKey="Tamayo, Elisabeth" sort="Tamayo, Elisabeth" uniqKey="Tamayo E" first="Elisabeth" last="Tamayo">Elisabeth Tamayo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada</wicri:regionArea>
<wicri:noRegion>Granada</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Benabdellah, Karim" sort="Benabdellah, Karim" uniqKey="Benabdellah K" first="Karim" last="Benabdellah">Karim Benabdellah</name>
<affiliation wicri:level="1">
<nlm:affiliation>Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada</wicri:regionArea>
<wicri:noRegion>Granada</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ferrol, Nuria" sort="Ferrol, Nuria" uniqKey="Ferrol N" first="Nuria" last="Ferrol">Nuria Ferrol</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada</wicri:regionArea>
<wicri:noRegion>Granada</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26900849</idno>
<idno type="pmid">26900849</idno>
<idno type="doi">10.1371/journal.pone.0149606</idno>
<idno type="pmc">PMC4765768</idno>
<idno type="wicri:Area/Main/Corpus">000458</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000458</idno>
<idno type="wicri:Area/Main/Curation">000458</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000458</idno>
<idno type="wicri:Area/Main/Exploration">000458</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis.</title>
<author>
<name sortKey="Tamayo, Elisabeth" sort="Tamayo, Elisabeth" uniqKey="Tamayo E" first="Elisabeth" last="Tamayo">Elisabeth Tamayo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada</wicri:regionArea>
<wicri:noRegion>Granada</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Benabdellah, Karim" sort="Benabdellah, Karim" uniqKey="Benabdellah K" first="Karim" last="Benabdellah">Karim Benabdellah</name>
<affiliation wicri:level="1">
<nlm:affiliation>Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada</wicri:regionArea>
<wicri:noRegion>Granada</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ferrol, Nuria" sort="Ferrol, Nuria" uniqKey="Ferrol N" first="Nuria" last="Ferrol">Nuria Ferrol</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada</wicri:regionArea>
<wicri:noRegion>Granada</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Glomeromycota (drug effects)</term>
<term>Glomeromycota (genetics)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (genetics)</term>
<term>Homeostasis (drug effects)</term>
<term>Homeostasis (genetics)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>Iron (metabolism)</term>
<term>Iron (pharmacology)</term>
<term>Mutation (genetics)</term>
<term>Mycelium (drug effects)</term>
<term>Mycelium (genetics)</term>
<term>Mycorrhizae (drug effects)</term>
<term>Mycorrhizae (genetics)</term>
<term>Oxidants (toxicity)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Up-Regulation (drug effects)</term>
<term>Up-Regulation (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Fer (métabolisme)</term>
<term>Fer (pharmacologie)</term>
<term>Glomeromycota (effets des médicaments et des substances chimiques)</term>
<term>Glomeromycota (génétique)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Homéostasie (effets des médicaments et des substances chimiques)</term>
<term>Homéostasie (génétique)</term>
<term>Mutation (génétique)</term>
<term>Mycelium (effets des médicaments et des substances chimiques)</term>
<term>Mycelium (génétique)</term>
<term>Mycorhizes (effets des médicaments et des substances chimiques)</term>
<term>Mycorhizes (génétique)</term>
<term>Oxydants (toxicité)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Régulation positive (effets des médicaments et des substances chimiques)</term>
<term>Régulation positive (génétique)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Test de complémentation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Glomeromycota</term>
<term>Homeostasis</term>
<term>Mycelium</term>
<term>Mycorrhizae</term>
<term>Saccharomyces cerevisiae</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Glomeromycota</term>
<term>Homéostasie</term>
<term>Mycelium</term>
<term>Mycorhizes</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Régulation positive</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Glomeromycota</term>
<term>Glutaredoxins</term>
<term>Homeostasis</term>
<term>Mutation</term>
<term>Mycelium</term>
<term>Mycorrhizae</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glomeromycota</term>
<term>Glutarédoxines</term>
<term>Homéostasie</term>
<term>Mutation</term>
<term>Mycelium</term>
<term>Mycorhizes</term>
<term>Régulation positive</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Iron</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Fer</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Fer</term>
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Hydrogen Peroxide</term>
<term>Iron</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Oxidants</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Oxydants</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genes, Fungal</term>
<term>Genetic Complementation Test</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes fongiques</term>
<term>Structure tertiaire des protéines</term>
<term>Test de complémentation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxins (GRXs) are small ubiquitous oxidoreductases involved in the regulation of the redox state in living cells. In an attempt to identify the full complement of GRXs in the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis, three additional GRX homologs, besides the formerly characterized GintGRX1 (renamed here as RiGRX1), were identified. The three new GRXs (RiGRX4, RiGRX5 and RiGRX6) contain the CXXS domain of monothiol GRXs, but whereas RiGRX4 and RiGRX5 belong to class II GRXs, RiGRX6 belongs to class I together with RiGRX1. By using a yeast expression system, we observed that the newly identified homologs partially reverted sensitivity of the GRX deletion yeast strains to external oxidants. Furthermore, our results indicated that RiGRX4 and RiGRX5 play a role in iron homeostasis in yeast. Gene expression analyses revealed that RiGRX1 and RiGRX6 were more highly expressed in the intraradical (IRM) than in the extraradical mycelium (ERM). Exposure of the ERM to hydrogen peroxide induced up-regulation of RiGRX1, RiGRX4 and RiGRX5 gene expression. RiGRX4 expression was also up-regulated in the ERM when the fungus was grown in media supplemented with a high iron concentration. These data indicate the two monothiol class II GRXs, RiGRX4 and RiGRX5, might be involved in oxidative stress protection and in the regulation of fungal iron homeostasis. Increased expression of RiGRX1 and RiGRX6 in the IRM suggests that these GRXs should play a key role in oxidative stress protection of R. irregularis during its in planta phase. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26900849</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis.</ArticleTitle>
<Pagination>
<MedlinePgn>e0149606</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0149606</ELocationID>
<Abstract>
<AbstractText>Glutaredoxins (GRXs) are small ubiquitous oxidoreductases involved in the regulation of the redox state in living cells. In an attempt to identify the full complement of GRXs in the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis, three additional GRX homologs, besides the formerly characterized GintGRX1 (renamed here as RiGRX1), were identified. The three new GRXs (RiGRX4, RiGRX5 and RiGRX6) contain the CXXS domain of monothiol GRXs, but whereas RiGRX4 and RiGRX5 belong to class II GRXs, RiGRX6 belongs to class I together with RiGRX1. By using a yeast expression system, we observed that the newly identified homologs partially reverted sensitivity of the GRX deletion yeast strains to external oxidants. Furthermore, our results indicated that RiGRX4 and RiGRX5 play a role in iron homeostasis in yeast. Gene expression analyses revealed that RiGRX1 and RiGRX6 were more highly expressed in the intraradical (IRM) than in the extraradical mycelium (ERM). Exposure of the ERM to hydrogen peroxide induced up-regulation of RiGRX1, RiGRX4 and RiGRX5 gene expression. RiGRX4 expression was also up-regulated in the ERM when the fungus was grown in media supplemented with a high iron concentration. These data indicate the two monothiol class II GRXs, RiGRX4 and RiGRX5, might be involved in oxidative stress protection and in the regulation of fungal iron homeostasis. Increased expression of RiGRX1 and RiGRX6 in the IRM suggests that these GRXs should play a key role in oxidative stress protection of R. irregularis during its in planta phase. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tamayo</LastName>
<ForeName>Elisabeth</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Benabdellah</LastName>
<ForeName>Karim</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferrol</LastName>
<ForeName>Nuria</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016877">Oxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="Y">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="Y">Homeostasis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025282" MajorTopicYN="N">Mycelium</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016877" MajorTopicYN="N">Oxidants</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26900849</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0149606</ArticleId>
<ArticleId IdType="pii">PONE-D-15-26782</ArticleId>
<ArticleId IdType="pmc">PMC4765768</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):1866-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Jan 1;26(1):104-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25355945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jun 18;4:204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23785383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Sep 15;446(3):333-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22928493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2016 Jan;243(1):251-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26403286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Dec 1;16(23):7196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9384596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2013 Dec;16(6):669-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23916750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 May 6;330(2):604-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15796926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Dec;76(23):7826-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Jan;35(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19811920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 Jul 28;58(2):409-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2546682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Dec 1;418(3):346-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9428742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jun 5;51(22):4377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2010 Feb;52(2):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20377681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):686-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 May;159(1):501-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22399646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 May;122(1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Apr 2;394(2):372-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20226171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2005 Aug 31;20(1):74-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16258244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):1101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18546601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2014 Feb;75:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24361504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2013 Mar;15(3):795-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22891731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):755-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22092242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2013 Nov;12(11):1554-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24058172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1204-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Nov;184(3):682-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6859-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23569283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1319-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1996;269:26-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8791634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Aug;7(8):1415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jan;10(1):e1004078</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24415955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 May;202(3):886-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24571730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):391-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18513221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2012 Jun;38(6):651-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22623151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2013 Jan;117(1):22-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23332830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2010 Dec;11(8):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21235502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2008 Dec;36(Pt 6):1112-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19021507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2010 Jun;56(3):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20379721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2009 Jan;46(1):94-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18955149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1513-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jun;19(6):2673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Mar;20(3):150-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 May 14;398(4):614-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20347849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1491-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22609301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):33-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17095025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Apr;18(4):1359-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17287397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Aug;66(15):2539-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2013 Mar 7;42(9):3107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23292141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Dec;204(4):833-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25414918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 10;277(19):16853-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11882660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Aug;54(8):1391-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23788647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Jul;15(5):373-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15875223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1992 May;2(3):417-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1303803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1989 Dec;16(5-6):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2692852</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
</list>
<tree>
<country name="Espagne">
<noRegion>
<name sortKey="Tamayo, Elisabeth" sort="Tamayo, Elisabeth" uniqKey="Tamayo E" first="Elisabeth" last="Tamayo">Elisabeth Tamayo</name>
</noRegion>
<name sortKey="Benabdellah, Karim" sort="Benabdellah, Karim" uniqKey="Benabdellah K" first="Karim" last="Benabdellah">Karim Benabdellah</name>
<name sortKey="Ferrol, Nuria" sort="Ferrol, Nuria" uniqKey="Ferrol N" first="Nuria" last="Ferrol">Nuria Ferrol</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000473 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000473 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26900849
   |texte=   Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26900849" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020